
OBJECT ORIENTED
PROGRAMMING USING C++

 A A container class container class is a data is a data
type that is capable of type that is capable of
holding a collection of holding a collection of
items.items.

 In C++, container classes In C++, container classes
can be implemented as a can be implemented as a
class, along with member class, along with member
functions to add, remove, functions to add, remove,
and examine items.and examine items.

Container Classes

Bags

 For the first example, For the first example,
think about a bag.think about a bag.

Bags

 For the first example, For the first example,
think about a bag.think about a bag.

 Inside the bag are Inside the bag are
some numbers.some numbers.

Initial State of a Bag

 When you first begin When you first begin
to use a bag, the bag to use a bag, the bag
will be empty.will be empty.

 We count on this to be We count on this to be
the the initial stateinitial state of any of any
bag that we use.bag that we use.

THIS BAG
IS

EMPTY.

Inserting Numbers into a Bag

 Numbers may be Numbers may be
inserted into a bag.inserted into a bag.

I AM
PUTTING THE

NUMBER 4
INTO THE

BAG.

Inserting Numbers into a Bag

 Numbers may be Numbers may be
inserted into a bag.inserted into a bag.

THE 4 IS
IN THE

BAG.

Inserting Numbers into a Bag

 Numbers may be Numbers may be
inserted into a bag.inserted into a bag.

 The bag can hold The bag can hold
many numbers.many numbers.

NOW I'M
PUTTING
ANOTHER

NUMBER IN
THE BAG --

AN 8.

Inserting Numbers into a Bag

 Numbers may be Numbers may be
inserted into a bag.inserted into a bag.

 The bag can hold The bag can hold
many numbers.many numbers.

THE 8 IS
ALSO IN

THE BAG.

Inserting Numbers into a Bag

 Numbers may be Numbers may be
inserted into a bag.inserted into a bag.

 The bag can hold The bag can hold
many numbers.many numbers.

 We can even insert We can even insert
the same number the same number
more than once.more than once. NOW I'M

PUTTING A
SECOND 4

IN THE
BAG.

Inserting Numbers into a Bag

 Numbers may be Numbers may be
inserted into a bag.inserted into a bag.

 The bag can hold The bag can hold
many numbers.many numbers.

 We can even insert We can even insert
the same number the same number
more than once.more than once. NOW THE

BAG HAS
TWO 4'S

AND AN 8..

Examining a Bag

 We may ask about We may ask about
the contents of the the contents of the
bag. bag.

HAVE
YOU GOT
ANY 4's

?

YES,
I HAVE
TWO OF
THEM.

Removing a Number from a Bag

 We may remove a We may remove a
number from a bag. number from a bag.

THIS
4 IS

OUTTA
HERE!

Removing a Number from a Bag

 We may remove a We may remove a
number from a bag.number from a bag.

 But we remove only But we remove only
one number at a one number at a
time. time.

ONE 4 IS
GONE, BUT
THE OTHER
4 REMAINS.

How Many Numbers

 Another operation is to Another operation is to
determine how many determine how many
numbers are in a bag.numbers are in a bag.

IN MY OPINION,
THERE ARE
TOO MANY
NUMBERS.

Summary of the Bag Operations

A bag can be put in its A bag can be put in its initial stateinitial state, ,
which is an empty bag.which is an empty bag.

Numbers can be Numbers can be insertedinserted into the bag.into the bag.
You may check how many You may check how many occurrencesoccurrences

of a certain number are in the bag.of a certain number are in the bag.
Numbers can be Numbers can be removedremoved from the bag.from the bag.
You can check You can check how manyhow many numbers are numbers are

in the bag.in the bag.

The Bag Class

 C++ classes (introduced in C++ classes (introduced in
Chapter 2) can be used to Chapter 2) can be used to
implement a container class implement a container class
such as a bag.such as a bag.

 The class definition includes:The class definition includes:

class bag

 The heading of the definition

The Bag Class

 C++ classes (introduced in C++ classes (introduced in
Chapter 2) can be used to Chapter 2) can be used to
implement a container class implement a container class
such as a bag.such as a bag.

 The class definition includes:The class definition includes:

class bag
{
public:

bag();

 The heading of the definition
A constructor prototype

The Bag Class

 C++ classes (introduced in C++ classes (introduced in
Chapter 2) can be used to Chapter 2) can be used to
implement a container class implement a container class
such as a bag.such as a bag.

 The class definition includes:The class definition includes:

class bag
{
public:

bag();
void insert(...
void remove(...
...and so on The heading of the definition

A constructor prototype
 Prototypes for public

member functions

The Bag Class

 C++ classes (introduced in C++ classes (introduced in
Chapter 2) can be used to Chapter 2) can be used to
implement a container class implement a container class
such as a bag.such as a bag.

 The class definition includes:The class definition includes:

class bag
{
public:

bag();
void insert(...
void remove(...
...and so on

private:

};

 The heading of the definition
A constructor prototype
 Prototypes for public

member functions
 Private member variables

We’ll look at private
members later.

The Bag’s Default Constructor

 Places a bag in the initial state (an empty Places a bag in the initial state (an empty
bag)bag)

bag::bag()
// Postcondition: The bag has been initialized
// and it is now empty.
{
. . .

}

The Insert Function

 Inserts a new number in the bagInserts a new number in the bag
void bag::insert(int new_entry)
// Precondition: The bag is not full.
// Postcondition: A new copy of new_entry has
// been added to the bag.
{

. . .
}

The Size Function

Counts how many integers are in the bag.Counts how many integers are in the bag.
int bag::size() const
// Postcondition: The return value is the number
// of integers in the bag.
{

. . .
}

The Size Function

Counts how many integers are in the bag.Counts how many integers are in the bag.
size_t bag::size() const
// Postcondition: The return value is the number
// of integers in the bag.
{

. . .
}

The Occurrences Function

Counts how many copies of a number occurCounts how many copies of a number occur
size_t bag::occurrences(int target) const
// Postcondition: The return value is the number
// of copies of target in the bag.
{

. . .
}

The Remove Function

Removes one copy of a numberRemoves one copy of a number
void bag::remove(int target)
// Postcondition: If target was in the bag, then
// one copy of target has been removed from the
// bag; otherwise the bag is unchanged.
{

. . .
}

Using the Bag in a Program

 Here is typical code from a Here is typical code from a
program that uses the new program that uses the new
bag class:bag class:

bag ages;

// Record the ages of three children:
ages.insert(4);
ages.insert(8);
ages.insert(4);

The Header File and
Implementation File

 The programmer who writes The programmer who writes
the new bag class must write the new bag class must write
two files:two files:

 bag1.hbag1.h, a header file that , a header file that
contains documentation and contains documentation and
the class definitionthe class definition

 bag1.cxxbag1.cxx, an implementation , an implementation
file that contains the file that contains the
implementations of the bag’s implementations of the bag’s
member functionsmember functions

bag’s documentation

bag’s class definition

Implementations of the
bag’s member functions

Documentation for the Bag Class

 The documentation gives The documentation gives
prototypes and prototypes and
specificationsspecifications for the bag for the bag
member functions.member functions.

 Specifications are written as Specifications are written as
precondition/postcondition precondition/postcondition
contracts.contracts.

 Everything needed to Everything needed to useuse the the
bag class is included in this bag class is included in this
comment.comment.

bag’s documentation

bag’s class definition

Implementations of the
bag’s member functions

The Bag’s Class Definition

 After the documentation, After the documentation,
the header file has the class the header file has the class
definition that we’ve seen definition that we’ve seen
before:before:

bag’s documentation

bag’s class definition

Implementations of the
bag’s member functions

class bag
{
public:

bag();
void insert(...
void remove(...
...and so on

private:

The Implementation File

 As with any class, the As with any class, the
actual definitions of the actual definitions of the
member functions are member functions are
placed in a separate placed in a separate
implementation file.implementation file.

 The The definitions definitions of the of the
bag’s member functions are bag’s member functions are
in bag1.cxx.in bag1.cxx.

bag’s documentation

bag’s class definition

Implementations of the
bag’s member functions

A Quiz

Suppose that a Mysterious Suppose that a Mysterious
Benefactor provides you Benefactor provides you
with the bag class, but you with the bag class, but you
are only permitted to read are only permitted to read
the documentation in the the documentation in the
header file. You cannot header file. You cannot
read the class definition or read the class definition or
implementation file. Can implementation file. Can
you write a program that you write a program that
uses the bag data type ?uses the bag data type ?

 Yes I can.Yes I can.
 No. Not unless I see the No. Not unless I see the

class declaration for the class declaration for the
bag.bag.

 No. I need to see the No. I need to see the
class declaration for the class declaration for the
bag , and also see the bag , and also see the
implementation file.implementation file.

A Quiz

Suppose that a Mysterious Suppose that a Mysterious
Benefactor provides you Benefactor provides you
with the bag class, but you with the bag class, but you
are only permitted to read are only permitted to read
the documentation in the the documentation in the
header file. You cannot header file. You cannot
read the class definition or read the class definition or
implementation file. Can implementation file. Can
you write a program that you write a program that
uses the bag data type ?uses the bag data type ?

 Yes I can.Yes I can.
You know the name of the You know the name of the
new data type, which is new data type, which is
enough for you to declare enough for you to declare
bag variables. You also bag variables. You also
know the headings and know the headings and
specifications of each of specifications of each of
the operations.the operations.

Implementation Details

 The entries of a bag The entries of a bag
will be stored in the will be stored in the
front part of an array, front part of an array,
as shown in this as shown in this
example. example.

[0][0] [1][1] [2][2] [3][3] [4][4] [5][5]

An array of integers

4 8 4

We don't care what's in
this part of the array.

Implementation Details

 The entries may The entries may
appear in any order. appear in any order.
This represents the This represents the
same bag as the same bag as the
previous one. . . previous one. . .

An array of integers

4 4 8

We don't care what's in
this part of the array.

[0][0] [1][1] [2][2] [3][3] [4][4] [5][5]

Implementation Details

 . . . and this also . . . and this also
represents the same represents the same
bag.bag.

An array of integers
We don't care what's in
this part of the array.

[0][0] [1][1] [2][2] [3][3] [4][4] [5][5]

4 4 8

Implementation Details

 We also need to keep track of how We also need to keep track of how
many numbers are in the bag.many numbers are in the bag.

An array of integers

8 4 4

We don't care what's in
this part of the array.

An integer to keep
track of the bag's size

3

[0][0] [1][1] [2][2] [3][3] [4][4] [5][5]

An Exercise

Use these ideas to write a Use these ideas to write a
list of private member list of private member
variables could implement variables could implement
the bag class. You should the bag class. You should
have two member have two member
variables. Make the bag variables. Make the bag
capable of holding up to capable of holding up to
20 integers.20 integers.

You have 60 seconds
to write the declaration.

An Exercise

class bag
{
public:

...
private:

int data[20];
size_t count;

};

One solution:

An Exercise

A more flexible solution:

class bag
{
public:

static const size_t CAPACITY = 20;
...

private:
int data[CAPACITY];
size_t count;

};

An Example of Calling Insert

void bag::insert(int new_entry)

Before calling insert, we
might have this bag b:

2

[0] [1] [2] . . .

8 4
b.data

b.count

An Example of Calling Insert

void bag::insert(int new_entry)

b.data

b.count

We make a function call
b.insert(17)

What values will be in
b.data and b.count
after the member
function finishes ?

2

[0] [1] [2] . . .

8 4

void bag::insert(int new_entry)

An Example of Calling Insert

void bag::insert(int new_entry)

After calling b.insert(17),
we will have this bag b:

33

[0] [1] [2] . . .

8 4 1717

void bag::insert(int new_entry)

b.data

b.count
2

[0] [1] [2] . . .

8 4

Pseudocode for bag::insert

 assert(size() < CAPACITY);assert(size() < CAPACITY);
 Place Place new_entrynew_entry in the appropriate location in the appropriate location

of the of the datadata array.array.
 Add one to the member variable Add one to the member variable countcount..

What is the “appropriate
location” of the data array ?

Pseudocode for bag::insert

 assert(size() < CAPACITY);assert(size() < CAPACITY);
 Place Place new_entrynew_entry in the appropriate location in the appropriate location

of the of the datadata array.array.
 Add one to the member variable Add one to the member variable countcount..

data[count] = new_entry;
count++;

Pseudocode for bag::insert

 assert(size() < CAPACITY);assert(size() < CAPACITY);
 Place Place new_entrynew_entry in the appropriate location in the appropriate location

of the of the datadata array.array.
 Add one to the member variable Add one to the member variable countcount..

data[count++] = new_entry;

The Other Bag Operations

Read Section 3.1 for the implementations of Read Section 3.1 for the implementations of
the other bag member functions.the other bag member functions.

Remember: If you are just Remember: If you are just usingusing the bag the bag
class, then you don’t need to know how the class, then you don’t need to know how the
operations are implemented.operations are implemented.

Later we will Later we will reimplementreimplement the bag using the bag using
more efficient algorithms. more efficient algorithms.

We’ll also have a few other operations to We’ll also have a few other operations to
manipulate bags.manipulate bags.

Other Kinds of Bags

 In this example, we have implemented a In this example, we have implemented a
bag containing bag containing integersintegers..

But we could have had a bag of But we could have had a bag of float float
numbersnumbers, a bag of , a bag of characterscharacters, a bag of , a bag of
stringsstrings
Suppose you wanted one of these other bags. How
much would you need to change in the
implementation ?
Section 3.1 gives a simple solution using
the C++ typedef statement.

 A container class is a class that can hold a A container class is a class that can hold a
collection of items.collection of items.

 Container classes can be implemented with a C++ Container classes can be implemented with a C++
class.class.

 The class is implemented with a header file The class is implemented with a header file
(containing documentation and the class (containing documentation and the class
definition) and an implementation file (containing definition) and an implementation file (containing
the implementations of the member functions).the implementations of the member functions).

 Other details are given in Section 3.1, which you Other details are given in Section 3.1, which you
should read.should read.

Summary

THE END

Presentation copyright 2010, Addison Wesley LongmanPresentation copyright 2010, Addison Wesley Longman
For use with For use with Data Structures and Other Objects Using C++Data Structures and Other Objects Using C++
by Michael Main and Walter by Michael Main and Walter SavitchSavitch..

Some artwork in the presentation is used with permission from Presentation Task ForceSome artwork in the presentation is used with permission from Presentation Task Force
(copyright New Vision Technologies Inc.) and Corel Gallery Clipart (copyright New Vision Technologies Inc.) and Corel Gallery Clipart CatalogCatalog (copyright(copyright
Corel Corporation, 3G Graphics Inc., Archive Arts, Corel Corporation, 3G Graphics Inc., Archive Arts, CartesiaCartesia Software, Image ClubSoftware, Image Club
Graphics Inc., One Mile Up Inc., Graphics Inc., One Mile Up Inc., TechPoolTechPool Studios, Totem Graphics Inc.).Studios, Totem Graphics Inc.).

Students and instructors who use Students and instructors who use Data Structures and Other ObjectsData Structures and Other Objects Using C++ Using C++ areare
welcome to use this presentation however they see fit, so long as this copyright notice welcome to use this presentation however they see fit, so long as this copyright notice
remains intact.remains intact.

