OBJECT ORIENTED
PROGRAMMING USING C++

IS a data
type that is capable of
holding a collection of

Iitems.

O In C++, container classes
can be implemented as a
class, along with member
functions to add, remove,
and examine items.

Bags 2 Y o
WZ3
0 For the first example, \
think about a bag.

Bags

O For the first example,
think about a bag.

O Inside the bag are
some numbers.

Initial State of a Bag

0 When you first begin
to use a bag, the bag
will be empty.

0 We count on this to be
the of any
bag that we use.

THIS BAG
1S
EMPTY.

Inserting Numbers into a Bag

0 Numbers may be
Inserted into a bag.

| AM
PUTTING THE
NUMBER 4
INTO THE
BAG.

Inserting Numbers into a Bag

0 Numbers may be

Inserted into a bag.
ai*- »”
, W
o

THE 4 1S
IN THE
BAG.

Inserting Numbers into a Bag

0 Numbers may be
Inserted into a bag.

0 The bag can hold
many numbers.

NOW I'M
PUTTING
ANOTHER
NUMBER IN
THE BAG --
AN 8.

Inserting Numbers into a Bag

0 Numbers may be
Inserted into a bag.

0 The bag can hold
many numbers.

THE 8 IS
ALSO IN
THE BAG.

Inserting Numbers into a Bag

0 Numbers may be
Inserted into a bag.

0 The bag can hold
many numbers.

0 We can even insert
the same number

more than once.

PUTTING A
SECOND 4
IN THE
BAG.

Inserting Numbers into a Bag

0 Numbers may be
Inserted into a bag.

0 The bag can hold
many numbers.

0 We can even insert ¥
the same number
NOW THE

more than once. BAG HAS

TWO 4'S
ANDAN8.. |

Examining a Bag

0 We may ask about
the contents of the

HAVE
YOU GOT

Removing a Number from a Bag

0 We may remove a
number from a bag.

Removing a Number from a Bag

0 We may remove a
number from a bag.

O But we remove only ONE 4 IS
GONE, BUT
one number at a THE OTHER

tlme g 4 REMAINS.

How Many Numbers

O Another operation Is to IN MY OPINION.

determine how many THERE ARE
TOO MANY

numbers are in a bag. NUMBERS.

27
Summary of the Bag Operations

2 A bag can be put in its ,
which Is an empty bag.

3¢ Numbers can be Into the bag.

sS4 You may check how many
of a certain number are in the bag.

Numbers can be from the bag.

You can check numbers are
In the bag.

The Bag Class

O C++ classes (introduced In
Chapter 2) can be used to
Implement a container class
such as a bag.

00 The class definition includes:

5

class bag

The Bag Class

O C++ classes (introduced In
Chapter 2) can be used to
Implement a container class
such as a bag.

00 The class definition includes:

g
g

class bag

{
public:

bag();

The Bag Class

class bag

{
public:

bag();

void Insert(...
void remove(...
...and so on

The Bag Class

class bag

{
public:

bag();

void insert(...

void remove(...

...and so on
private:

I T T

()|

The Bag’s Default Constructor

0 Places a bag in the initial state (an empty

bag)

bag::bag()
/[Postcondition: The bag has been initialized

/[and It IS now empty.

{

The Insert Function

O Inserts a new number in the bag

void bag::insert(int new_entry)

/[Precondition: The bag is not full.

/[Postcondition: A new copy of new_entry has
/[been added to the bag.

{

The Size Function

0 Counts how many integers are In the bag.

Int bag::size() const
/[Postcondition: The return value is the number
/[of Integers In the bag.

{

The Size Function

0 Counts how many integers are In the bag.

size t bag::size() const
/[Postcondition: The return value is the number
/[of integers in the bag.

{

The Occurrences Function

0 Counts how many copies of a number occur

size_t bag::occurrences(int target) const
/[Postcondition: The return value is the number
/[of copies of target in the bag.

{

The Remove Function

0 Removes one copy of a number

void bag::remove(int target)

/[Postcondition: If target was in the bag, then
/[one copy of target has been removed from the
/[bag; otherwise the bag Is unchanged.

{

Using the Bag In a Program

Here Is typical code from a
orogram that uses the new
nag class:

bag ages;

// Record the ages of three children:
ages.insert(4);
ages.insert(8);
ages.insert(4);

The Header File and
Implementation File

O The programmer who writes %

the new bag class must write

two files:
- S
a header file that — >

bag’s documentation

O
contains documentation and bag’s class definition

the class definition _

O , an iImplementation >
file that contams the -
Implementations of the bag’s
member functions

Implementations of the
bag’s member functions

Documentation for the Bag Class

O The documentation gives
prototypes and
specifications for the bag
member functions.

O Specifications are written as
precondition/postcondition
contracts.

O Everything needed to use the
bag class is included in this
comment.

bag’s documentation

bag’s class definition

Implementations of the
bag’s member functions

The Bag’s Class Definition

O After the documentation,
the header file has the class
definition that we’ve seen
before:

class bag

{
public:

bag();

void insert(...

void remove(...

...and so on
private:

Implementations of the
bag’s member functions

The Implementation File

O As with any class, the
actual definitions of the
member functions are
placed in a separate
Implementation file.

O The definitions of the

bag’s member functions are
In bagl.cxx.

7

bag’s documentation

liiiiiiniininkiiiniki

bag’s class definition

_
0

Implementations of the
bag’s member functions

. o
%///ﬁ

A Quiz

Suppose that a Mysterious % Yes | can.

Benefactor provides you

with the bag class, butyou * No. Not unless | see the
are only permitted to read class declaration for the
the documentation in the bag.

header file. You cannot

read the class definition or ~ * NO. | need to see the
implementation file. Can class declaration for the

you write a program tha}? bag , and also see the
L implementation file.

A Quiz

Suppose that a Mysterious
Benefactor provides you
with the bag class, but you
are only permitted to read
the documentation in the
header file. You cannot
read the class definition or
Implementation file. Can
you write a program that
uses the bag data type ?

You know the name of the

new data type, which is
enough for you to declare
bag variables. You also
know the headings and
specifications of each of
the operations.

Implementation Detalils

O The entries of a bag
will be stored in the
front part of an array,

as shown in this
example.

el

An array of integers
We don't care what's in

this part of the array.

Implementation Detalils

O The entries may

appear in any order.

This represents the
same bag as the
previous one. . .

An array of integers

We don't care what's in
this part of the array.

Implementation Detalils

O ... and this also
represents the same
bag.

e

An array of integers

We don't care what's in
this part of the array.

Implementation Detalils

0 We also need to keep track of how
many numbers are in the bag.

3 An integer to keep
track of the bag's size

ol

An array of integers

We don't care what's in
this part of the array.

An Exercise

Use these ideas to write a
list of private member
variables could implement
the bag class. You should
have two member
variables. Make the bag
capable of holding up to
20 integers.

An Exercise

One solution:

class bag

{
public:

private:
Int data[20];
Size t count;

%

An Exercise

A more flexible solution:

class bag

{
public:

static const size t CAPACITY = 20;

private:
Int data|] CAPACITY];
Size t count;

%

An Example of Calling Insert

void bag::insert(int new_entry)

Before calling insert, we
might have this bag b:

[0] [1] [2] ...

EEEE
b.data
b.count

An Example of Calling Insert

void bag::insert(int new_entry)

We make a function call
b.insert(17)

[0] [1] [2] ...

EEEE
b.data
b.count

An Example of Calling Insert

void bag::insert(int new_entry)

After calling b.insert(17),
we will have this bag b:

[0] [1] [2] ... (0] [[2] ...

BEEEE DEEER
b.data
b.count

Pseudocode for bag::insert

2 assert(size() < CAPACITY);
% Place new_entry in the appropriate location

of the data array.
Add one to the member variable count.

Pseudocode for bag::insert

2 assert(size() < CAPACITY);

% Place new_entry in the appropriate location
of the data array.

Add one to the member variable count.

data[count] = new_entry;
count++;

Pseudocode for bag::insert

2 assert(size() < CAPACITY);
% Place new_entry in the appropriate location

Z\

of the data array.

Add one to the member variable count.

data] count++] = new_entry;

The Other Bag Operations

0 Read Section 3.1 for the implementations of
the other bag member functions.

0 Remember: If you are just using the bag

class, then you don’t need to know how the
operations are implemented.

O Later we will reimplement the bag using
more efficient algorithms.

o We’ll also have a few other operations to
manipulate bags.

Other Kinds of Bags

O In this example, we have implemented a
bag containing integers.

0 But we could have had a bag of float
numbers, a bag of characters, a bag of
strings . . .

*ummary

0 A container class iIs a class that can hold a
collection of 1tems.

O Container classes can be implemented with a C++

class.

0 The class is implemented with a header file
(containing documentation and the class
definition) and an implementation file (containing
the implementations of the member functions).

0 Other details are given in Section 3.1, which you
should read.

g

THE END

